Abstract

There is a critical issue in explainable recommender systems that compounds the challenges of explainability yet is rarely tackled: the lack of ground-truth explanation texts for training. It is unrealistic to expect every user-item pair in a dataset to have a corresponding target explanation. Hence, we pioneer the first non-supervised explainability architecture for review-based collaborative filtering (called NEAR) as our novel contribution to the theory of explanation construction in recommender systems. While maintaining excellent recommendation performance, our approach reformulates explainability as a non-supervised (i.e., unsupervised and self-supervised) explanation generation task. We formally define two explanation types, both of which NEAR can produce. An invariant explanation, fixed for all users, is based on the unsupervised extractive summary of an item's reviews via embedding clustering. Meanwhile, a variant explanation, personalized for a specific user, is a sentence-level text generated by our customized Transformer conditioned on every user-item-rating tuple and artificial ground-truth (self-supervised label) from one of the invariant explanation's sentences. Our empirical evaluation illustrates that NEAR's rating prediction accuracy is better than the other state-of-the-art baselines. Moreover, experiments and assessments show that NEAR-generated variant explanations are more personalized and distinct than those from other Transformer-based models, and our invariant explanations are preferred over those from other contemporary models in real life.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.