Abstract

Phase sensitive amplifiers (PSAs) based on optical parametric amplification feature near noiseless amplification, which is of considerable benefit for improving the performance of optical communication systems. Currently, the majority of research on PSAs is carried out on the basis of highly nonlinear fibers or periodically poled lithium niobite waveguides, with the impediments of being susceptible to environmental interference and requiring complex temperature control systems to maintain quasi-phase matching conditions, respectively. Here, a near-noiseless and small-footprint PSA based on dispersion-engineered AlGaAs-on-insulator (AlGaAsOI) waveguides is proposed and demonstrated theoretically. The phase-dependent gain and the phase-to-phase transfer function of the PSA are calculated to analyze its characteristics. Furthermore, we investigate in detail the effects of linear loss, nonlinear coefficient, and pump power on the PSA gain and noise figure (NF) in AlGaAsOI waveguides. The results show that a PSA based on an AlGaAsOI waveguide is feasible with a maximum phase sensitive gain of 33dB, achieving an NF of less than 1dB over a gain bandwidth of 245nm with a gain of >15d B, which completely covers the S+C+L band. This investigation is worthwhile for noiseless PSAs on photonic integrated chips, which are promising for low-noise optical amplification, multifunctional photonic integrated chips, quantum communication, and spectroscopy, and as a reference for low-noise PSAs depending on the third-order nonlinearity, χ (3), of the waveguide material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call