Abstract
The application of strain-based design for pipelines requires comprehensive understanding of the postyield mechanical behavior of materials. In this article, the impact of plastic prestrain on near-neutral pH stress corrosion cracking (SCC) susceptibility of welded X70 steel was investigated with a slow strain rate tensile (SSRT) test. Generally, plastic prestrain reduces the SCC resistance in various welded zones. The SCC susceptibility of the test materials can be put in the following order: heat-affected zone (HAZ) > weld metal (WM) > base metal (BM). Fractographic analysis indicates that there are two cracking modes, mode I and mode II, during SSRT tests. Mode I cracks propagate along the direction perpendicular to the maximum tensile stress, and mode II cracks lie in planes roughly parallel to the plane where the maximum shear exists. The SCC of the BM is governed by mode I cracking and fracture of the HAZ, and the WM is dominated by mode II cracking. Damage analysis shows that the detrimental impact of plastic prestrain on the residual SCC resistance cannot be evaluated with the linear superposition model. A plastic prestrain sensitivity, a material constant independent of plastic prestrain, is proposed to characterize the susceptibility of SCC resistance to plastic prestrain, and it increases with the SCC susceptibility of the steels. The enhanced SCC susceptibility caused by plastic prestrain may be related to an increase in yield strength. The correlation of the ratio of the reduction in area in NS4 solution to that in air (RASCC/RAair) with the yield strength is microstructure dependent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.