Abstract
Dense, near net-shaped ZrC/W-based composites have been fabricated at modest temperatures and at ambient pressure by a reactive infiltration process known as the Displacive Compensation of Porosity (DCP) method. Porous WC preforms with hourglass shapes (for rocket nozzle liners) were produced by gel casting, whereas simple bar-shaped preforms were produced by uniaxial pressing. The porous preforms were exposed to molten Zr2Cu at 1200–1300°C and ambient pressure. The Zr2Cu liquid rapidly infiltrated into the preforms and underwent a displacement reaction with the WC to yield a more voluminous mixture of solid products, ZrC and W. This displacement reaction-induced increase in internal solid volume filled the prior pore spaces of the preforms (“displacive compensation of porosity”) to yield dense, ZrC/W-based composites. Because the preforms remained rigid during reactive infiltration, the final composites retained the external shapes and dimensions of the starting preforms. A DCP-derived, ZrC/W-based nozzle insert was found to be resistant to the severe thermal shock and erosive conditions of a Pi-K rocket motor test. The DCP process enables dense, ceramic/refractory metal composites to be fabricated in complex and near net shapes without the need for high-temperature or high-pressure densification or for extensive machining (i.e., relatively expensive processing steps are avoided).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.