Abstract

ZrC/W-based composites with complex shapes have been fabricated by combining rapid prototyping methods for synthesizing porous WC preforms with the shape/dimension-preserving, reactive infiltration-based Displacive Compensation of Porosity (DCP) process. Two automated rapid prototyping methods were examined: (i) computer-numerical-controlled machining of porous WC powder compacts, and (ii) 3D printing of WC powder. After binder removal and partial sintering (to neck the WC particles), the shaped, porous, and rigid preforms were exposed to molten Zr 2Cu at 1150–1300 °C and ambient pressure. Upon infiltration, the Zr in the melt underwent a displacement reaction with WC to yield more voluminous ZrC and W products that filled prior pores (reaction-induced densification). The resulting ZrC/W-based composites retained the shapes and dimensions (to within 1%) of the WC preforms. This work demonstrates, for the first time, that rapid preform prototyping can be integrated with the DCP process to generate dense, ultrahigh-melting carbide/refractory metal composites with tailorable near net-shapes and -dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.