Abstract
Near-memory processing (NMP) is a prospective paradigm enabling memory-centric computing. By moving the compute capability next to the main memory (DRAM modules), it can fundamentally address the CPU-memory bandwidth bottleneck and thus effectively improve the performance of memory-constrained workloads. Using the personalized recommendation system as a driving example, we developed a scalable, practical DIMM-based NMP solution tailor-designed for accelerating the inference serving. Our solution is demonstrated on a versatile FPGA-enabled NMP platform called AxDIMM that allows rapid prototyping and evaluation of NMP’s performance potential on real hardware under a realistic system setting using industry-representative recommendation framework. We experimentally validated the performance of a two-ranked AxDIMM prototype, which achieves up to 1.89× speedup in latency and 31.6% memory energy saving for embedding operations. For end-to-end recommendation inference serving, AxDIMM improves the throughput up to 1.5× and latency-bounded throughput up to 1.77×, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.