Abstract

Abstract For stem cell therapy of degenerative diseases, it is necessary to differentiate stem cells into the specific lineage. There are several growth factors which have been used for differentiation of stem cells. Some growth factors can dose-dependently induce differentiation of stem cells so that the increase of growth factor concentration results in production of the higher level of differentiated cells. However, due to the toxicity of some differentiation factors (e.g. retinoic acid), the lower dose of growth factors for the specific lineage differentiation of stem cells is desirable. This paper suggests a new approach in the field of controlled growth factor delivery system using semiconductor nanocrystals; known as quantum dots (QDs). This system contains polymeric microencapsulated growth factor which is conjugated to near infrared (NIR) absorbing QDs. The control release of growth factors from microcapsules in the culture plates can be achieved by irradiation. To modulate growth factor release in response to stem cells needs for differentiation, the intensity and period of irradiation will be controlled. Our hypothesis is based on the fact that QDs can absorb NIR energy and by excitation of electrons and then vibrational relaxation of them become heated when they were irradiated and then release growth factors. We believe that controlled growth factors delivery through the suggested system is an effective method to reduce the amount of growth factors required for differentiation of stem cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call