Abstract

Based on nonequilibrium molecular dynamics (NEMD) and nonequilibrium Green’s function simulations, the interfacial thermal conductance (ITC) of graphene/h-BN in-plane heterostructures with near-interface defects (monovacancy defects, 585 and f5f7 double-vacancy defects) is studied. Compared to pristine graphene/h-BN, all near-interface defects reduce the ITC of graphene/h-BN. However, differences in defective structures and the wrinkles induced by the defects cause significant discrepancies in heat transfer for defective graphene/h-BN. The stronger phonon scattering and phonon localization caused by the wider cross-section in defects and the larger wrinkles result in the double-vacancy defects having stronger energy hindrance effects than the monovacancy defects. In addition, the approximate cross-sections and wrinkles induced by the 585 and f5f7 double-vacancy defects provide approximate heat hindrance capability. The phonon transmission and vibrational density of states (VDOS) further confirm the above results. The double-vacancy defects in the near-interface region have lower low-frequency phonon transmission and VDOS values than the monovacancy defects, while the 585 and f5f7 double-vacancy defects have similar low-frequency phonon transmission and VDOS values at the near-interface region. This study provides physical insight into the thermal transport mechanisms in graphene/h-BN in-plane heterostructures with near-interface defects and provides design guidelines for related devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.