Abstract

The effective use of sunlight by photocatalyst systems is challenging. Here, we report an active-core@inert-shell nanohybrid composite that converts incompatible near-infrared (NIR) radiation to functional ultraviolet-visible (UV–vis) photons. The active core is composed of NaYF4: Yb3+, Gd3+, and Tm3+ upconverting nanoparticles (UCNPs). An inert bismuth tungstate (Bi2WO6) shell with a narrow band gap (2.65 eV) was grown over the core via ethylenediaminetetraacetic acid-metal complex formation. Solar infrared photons were successfully converted to UV–vis photons, which activated the Bi2WO6 shell via Förster resonance energy transfer (FRET). The high UV–vis-NIR response of the UCNP@Bi2WO6 composite was demonstrated by 94% degradation of Bisphenol A in 180 min. Integrating UCNPs with Bi2WO6 resulted in a high quantum yield of 3.16 × 10−5 molecules/photon, which is superior to the yield of the photocatalysts currently used. High photocurrent density (0.78 mA/cm2) confirmed the excellent photoelectrochemical potential for water splitting. Hydroxyl radicals generated at the valence band and superoxide radicals at defect sites in the Bi2WO6 explain the excellent catalytic activity of UCNP@Bi2WO6. A figure of merit (FOM) reflecting important operational parameters was calculated and compared with previous reports for catalytic performance evaluation. The high FOM value of the UCNP@Bi2WO6 hybrid composite indicates its excellent potential for practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.