Abstract

Abstract We present low-resolution near-infrared (IR) 0.8–2.5 μm spectra of Supernova (SN) 2009ip, taken immediately before, during and just after its rapid brightening in late September/October 2012. The first epoch shows the same general spectral characteristics as the later epochs (smooth continuum, narrow H and He i emission lines), but the IR continuum shape is substantially redder than the later epochs. The epoch 1 continuum can be approximated by reddening the peak-luminosity (epoch 3) spectrum by E(B − V) = 1.0 mag, but the blue colour seen in visual-wavelength spectra at the same time indicates that strong wavelength-dependent extinction by circumstellar dust is not the correct explanation. Instead, we favour the hypothesis that the redder colour before the brightening arises from excess emission from hot ∼2000 K circumstellar dust. The minimum radius ( ≳ 120 au) deduced from the dust temperature and observed luminosity of the transient, combined with the observed expansion speed in the precursor outbursts of SN 2009ip, is consistent with an ejection at least 1.1 yr earlier. The mass of hot dust indicated by the IR excess is ∼4 × 10−7 M⊙, although this is only a lower limit since the near-IR data do not constrain the mass of cooler dust. Thus, the observed pre-SN outbursts of this object were able to efficiently form dust into which the SN ejecta and radiation now propagate. This is consistent with the notion that the same pre-SN eruptions that generally give rise to SNe IIn also give rise to the dust needed for their commonly observed IR echoes. We also discuss some aspects of the IR line profiles, including He i λ10 830.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call