Abstract

Bone blood perfusion has an essential role in maintaining a healthy bone. However, current methods for measuring bone blood perfusion are expensive and highly invasive. This study presents a custom built near-infrared spectroscopy (NIRS) instrument to measure changes in bone blood perfusion. We demonstrated the efficacy of this device by monitoring oxygenated and deoxygenated hemoglobin changes in the human tibia during and after exercise in able-bodied and in individuals with spinal cord injury (SCI), a population with known impaired peripheral blood perfusion. Nine able-bodied individuals and six volunteers with SCI performed a 10 min rowing exercise (functional electrical stimulation rowing for those with SCI). With exercise, during rowing, able-bodied showed an increase in deoxygenated hemoglobin in the tibia. Post rowing, able-bodied showed an increase in total blood content, characterized by an increase in total hemoglobin content due primarily to an increase in deoxygenated hemoglobin. During rowing and post-rowing, those with SCI showed no change in total blood content in the tibia. The current study demonstrates that NIRS can non-invasively detect changes in hemoglobin concentration in the tibia. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:183-191, 2018.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.