Abstract
PurposeTo develop the means to estimate cartilage histologic grades and proteoglycan content in ex vivo arthroscopy using near-infrared spectroscopy (NIRS).MethodsIn this experimental study, arthroscopic NIR spectral measurements were performed on both knees of 9 human cadavers, followed by osteochondral block extraction and in vitro measurements: reacquisition of spectra and reference measurements (proteoglycan content, and three histologic scores). A hybrid model, combining principal component analysis and linear mixed-effects model (PCA-LME), was trained for each reference to investigate its relationship with in vitro NIR spectra. The performance of the PCA-LME model was validated with ex vivo spectra before and after the exclusion of outlying spectra. Model performance was evaluated based on Spearman rank correlation (ρ) and root-mean-square error (RMSE).ResultsThe PCA-LME models performed well (independent test: average ρ = 0.668, RMSE = 0.892, P < .001) in the prediction of the reference measurements based on in vitro data. The performance on ex vivo arthroscopic data was poorer but improved substantially after outlier exclusion (independent test: average ρ = 0.462 to 0.614, RMSE = 1.078 to 0.950, P = .019 to .008).ConclusionsNIRS is capable of nondestructive evaluation of cartilage integrity (i.e., histologic scores and proteoglycan content) under similar conditions as in clinical arthroscopy.Clinical RelevanceThere are clear clinical benefits to the accurate assessment of cartilage lesions in arthroscopy. Visual grading is the current standard of care. However, optical techniques, such as NIRS, may provide a more objective assessment of cartilage damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.