Abstract
The frequent occurrence of adulterating Tartary buckwheat powder with crop flours in the market necessitates an urgent need for a simple analysis method to ensure the quality of Tartary buckwheat. This study employed near-infrared spectroscopy (NIRS) for the collection of spectral data from Tartary buckwheat samples adulterated with whole wheat, oat, soybean, barley, and sorghum flours. The competitive adaptive reweighted sampling (CARS) and successive projection algorithm (SPA) were deployed to identify informative wavelengths. By integrating support vector machine (SVM) and partial least squares discriminant analysis (PLS-DA), we constructed qualitative models to discern Tartary buckwheat adulteration. The PLS-DA model exhibited prediction accuracies between 89.78 % and 94.22 %, while the mean-centering (MC)-PLS-DA model showcased impressive predictive accuracy of 93.33 %. Notably, the feature-based Autoscales-CARS-CV-SVM model achieved more excellent identification accuracy. These findings exhibit the excellent potential of chemometrics as a powerful tool for detecting food product adulteration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.