Abstract
Consumers demand to know the floral origins of honeys. Therefore, the use of simple and reliable techniques for differentiating among honeys by their origins is necessary. Multivariate statistical techniques and near infrared spectroscopy applied to palynological and mineral characteristics make it possible to differentiate among the types of honey collected from Northwestern Spain. Prediction models using a modified partial least squares regression for the main pollen types (Castanea, Eucalyptus, Rubus and Erica) in honeys and their mineral composition (potassium, calcium, magnesium and phosphorus) were established. Good multiple correlation coefficients (higher than 0.700) and acceptable standard errors of cross-validation were obtained. The ratio performance deviation exhibited a good prediction capacity for Rubus pollen and for Castanea pollen, whereas for minerals, for Eucalyptus pollen and for Erica pollen the ratio performance deviation was excellent. Near infrared spectroscopy was established as a rapid and effective tool to obtain equations of prediction that contribute to the honey typification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.