Abstract
The main purpose of this study was to investigate the relationship between some coffee roasting variables (weight loss, density and moisture) with near infrared (NIR) spectra of original green (i.e. raw) and differently roasted coffee samples, in order to test the availability of non-destructive NIR technique to predict coffee roasting degree. Separate calibration and validation models, based on partial least square (PLS) regression, correlating NIR spectral data of 168 representatives and suitable green and roasted coffee samples with each roasting variable, were developed. Using PLS regression, a prediction of the three modelled roasting responses was performed. High accuracy results were obtained, whose root mean square errors of the residuals in prediction (RMSEP) ranged from 0.02 to 1.23%. Obtained data allowed to construct robust and reliable models for the prediction of roasting variables of unknown roasted coffee samples, considering that measured vs. predicted values showed high correlation coefficients ( r from 0.92 to 0.98). Results provided by calibration models proposed were comparable in terms of accuracy to the conventional analyses, revealing a promising feasibility of NIR methodology for on-line or routine applications to predict and/or control coffee roasting degree via NIR spectra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.