Abstract
We demonstrate a simple multi-wavelength optical source suitable for spectroscopic optical resolution photoacoustic microscopy (OR-PAM) of lipid-rich tissue. 1064 nm laser pulses are converted to multiple wavelengths beyond 1300 nm via nonlinear optical propagation in a birefringent optical fiber. OR-PAM experiments with lipid phantoms clearly show the expected absorption peak near 1210 nm. We believe this simple multi-color technique is a promising cost-effective approach to spectroscopic OR-PAM of lipid-rich tissue.
Highlights
Photoacoustic microscopy (PAM) relies on pulsed optical excitation and acoustic detection to produce high contrast images of tissue
optical parametric oscillators (OPOs) are the laser of choice for tunable near-infrared operation
The very high cost of OPOs is a drawback for practical applications
Summary
Photoacoustic microscopy (PAM) relies on pulsed optical excitation and acoustic detection to produce high contrast images of tissue. Optical resolution PAM (OR-PAM) achieves very fine spatial resolution by focusing the laser excitation [1]. The appropriate choice of laser wavelength is determined by the optical absorption spectrum of the tissue of interest. Dye lasers and optical parametric oscillators (OPOs) are usually used for spectroscopic PAM at short visible wavelengths. OPOs are the laser of choice for tunable near-infrared operation. These lasers have high pulse energy and large wavelength tuning range, and repetition rates in the kHz range are available. We are exploring more cost-effective methods to convert a 1064 nm pulsed laser into a near-infrared multi-wavelength source suitable for spectroscopic OR-PAM of lipid-rich tissue
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.