Abstract

Former assignments of the matrix-isolation infrared (MI-IR) spectrum of 2-chloropropionic acid are revised with the help of near-infrared (NIR) laser irradiation induced change in conformer ratios. This method allows not only the unambiguous assignment of each band in the MI-IR spectrum to the two trans (Z) and the cis (E) conformers but also the assignment of the spectral bands to different matrix sites. The tunneling decay of the higher-energy cis conformer prepared from both trans conformers in different sites is also investigated. It is shown that the tunneling decay time is very sensitive to the matrix site, especially if the in situ prepared high-energy conformer has a strained geometry in the matrix cage. The analysis shows that the kinetics of some cis → trans back conversion processes cannot be fitted by a single exponential decay. The possible reasons of this observation are examined and discussed. The present and former results clearly show that, in addition to tunneling processes, the decay rates strongly depend on solid-state effects. Therefore, simple theoretical predictions of decay rates, which do not take into account the solid-state effects, can only be compared to experimental observations only if experimentally proven that these effects do not significantly affect the experimentally measured tunneling rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.