Abstract

By combining the unique features of the quantum cutting luminescence and long persistent luminescence, we design a new concept called “near-infrared quantum cutting long persistent luminescence (NQPL)”, which makes it possible for us to obtain highly efficient (>100%) near-infrared long persistent luminescence in theory. Guided by the NQPL concept, we fabricate the first NQPL phosphor Ca2Ga2GeO7:Pr3+,Yb3+. It reveals that both the two-step energy transfer of model (I) and the one-step energy transfer of model (IV) occur in 3P0 levels of Pr3+. Although the actual efficiency is not sufficient for the practical application at this primitive stage, this discovery and the associated materials are still expected to have important implications for several fields such as crystalline Si solar cells and bio-medical imaging.

Highlights

  • By combining the unique features of the quantum cutting luminescence and long persistent luminescence, we design a new concept called “near-infrared quantum cutting long persistent luminescence (NQPL)”, which makes it possible for us to obtain highly efficient (>100%) near-infrared long persistent luminescence in theory

  • Quantum cutting luminescence (QCL) is an interesting and significant optical phenomenon occurring in materials that is able to convert one high-energy photon, generally at ultraviolet or visible wavelengths, into two low-energy photons, typically in near-infrared (NIR) spectral range[1,2,3]

  • The occurrence of 3P0 emissions of Pr3+ is very significant for the QCL of the Pr3+-Yb3+ pairs, and it should be associated with the low phonon energy of the Ca2Ga2GeO7 crystal, which partly prevents the multiphonon relaxation from 3P0 to 1D2

Read more

Summary

Introduction

By combining the unique features of the quantum cutting luminescence and long persistent luminescence, we design a new concept called “near-infrared quantum cutting long persistent luminescence (NQPL)”, which makes it possible for us to obtain highly efficient (>100%) near-infrared long persistent luminescence in theory. Quantum cutting luminescence (QCL) is an interesting and significant optical phenomenon occurring in materials that is able to convert one high-energy photon, generally at ultraviolet or visible wavelengths, into two low-energy photons, typically in near-infrared (NIR) spectral range[1,2,3].

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call