Abstract

Efficient near-infrared (NIR) quantum cutting (QC) has been demonstrated in Yb3+ doped SrMoO4 phosphors synthesized by the high-temperature solid-state reaction method. The obtained SrMoO4:Yb3+ phosphors were characterized by X-ray diffraction (XRD), diffuse reflectance spectra, photoluminescence (PL) spectra and decay lifetime to understand the observed near-infrared quantum cutting phenomena. The XRD results show that all the prepared phosphors can be readily indexed to the pure tetragonal phase of SrMoO4 and exhibit good crystallinity. The experimental results showed that the strong visible molybdate (MoO2-(4)) emission around 493 nm and near-infrared (NIR) emission around 1000 nm from Yb3+(2F(5/2)-->2F(7/2)) of SrMoO4:Yb3+ phosphors were observed under ultraviolet (290 nm) excitation. The Yb + concentration dependence of luminescent properties and lifetimes of both the visible and NIR emissions have also been investigated. The quenching concentration of Yb3+ ions approaches as high as 10 mol%. The cooperative energy transfer (CET) mechanism was also discussed in detail. The broadband NIR QC phosphors may possibly have potential application in enhancing the conversion efficiency of solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.