Abstract

Properties of the quantum-cutting phosphors are dependent on various factors such as dopant concentration, crystallinity, homogeneity, particle size and surface morphology. Effective control of the above parameters can enhance the quantum-cutting ability of the phosphor material. Nano-sized particles of Y2O3:Tb3+,Yb3+ were prepared with a solution-based co-precipitation method and subsequent calcination. Effective control of the reaction parameters and doping concentration helped to produce uniform nanostructures with high quantum-cutting efficiency up to 181.1 %. The energy transfer mechanism between Tb3+ and Yb3+ was studied by considering their spectroscopic properties and time-resolved spectroscopy. The high efficiency and small particle size of the quantum-cutting phosphor Y2O3:Tb3+,Yb3+ make it a suitable candidate for its application in solar cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call