Abstract
Near-infrared (NIR) luminescent phosphors hold promise for a wide range of applications, from bioimaging to light-emitting diodes (LEDs), but are typically confined to wavelengths <1300 nm and manifest substantial thermal quenching pervasive in luminescent materials. Here we observed the thermally enhanced NIR luminescence of Er3+ (1540 nm), a 2.5-fold enhancement with increasing temperature from 298 to 356 K, from Yb3+- and Er3+-codoped CsPbCl3 perovskite quantum dots (PQDs) (photoexcited at ∼365 nm). Mechanistic investigations revealed that thermally enhanced phenomena originated from combined effects of thermally stable cascade energy transfer (from a photoexcited exciton to a pair of Yb3+ and then to surrounding Er3+) and minimized quenching of surface-adsorbed water molecules on the 4I13/2 state of Er3+ induced by the temperature increase. Importantly, these PQDs enable producing phosphor-converted LEDs emitting at 1540 nm with inherited thermally enhanced properties, having implications for a wide range of photonic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.