Abstract

Room-temperature phosphorescent materials that emit light in the visible (red, green, and blue; from 400 to 700 nm) have been a major focus of research and development during the past decades, due to their applications in organic light-emitting diodes (OLEDs), light-emitting electrochemical cells, photovoltaic cells, chemical sensors, and bio-imaging. In recent years, near-infrared (NIR) phosphorescence beyond the visible region (700-2500 nm) has emerged as a new, promising, and challenging research field with potential applications toward NIR OLEDs, telecommunications, night vision-readable displays. Moreover, NIR phosphorescence holds promise for in vivo imaging, because cells and tissues exhibit little absorption and auto-fluorescence in this spectral region. This review describes the overall progress made in the past ten years on NIR phosphorescent transition-metal complexes including Cu(I), Cu(II), Cr(III), Re(I), Re(III), Ru(II), Os(II), Ir(III), Pt(II), Pd(II), Au(I), and Au(III) complexes, with a primary focus on material design complemented with a selection of optical, electronic, sensory, and biologic applications. A critical comparison of various NIR phosphorescent materials reported in the literature and a blueprint for future development in this field are also provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.