Abstract

Photodynamic therapy (PDT) is a clinically-approved cancer treatment that is based on production of cytotoxic reactive oxygen species to induce cell death. However, its efficiency depends on distribution of photosensitizer (PS) and depth of light penetration through the tissues. Tendency of pathological cancer tissues to exhibit lower pH than healthy tissues inspired us to explore dual-targeted pH-activatable photosensitizers based on tunable near-infrared (NIR) boron-dipyrromethene (BODIPY) dyes. Our BODIPY PSs were designed to carry three main attributes: (i) biotin or cRGD peptide as an effective cancer cell targeting unit, (ii) amino moiety that is protonated in acidic (pH <6.5) conditions for pH-activation of the PS based on photoinduced electron transfer (PET) and (iii) hydrophilic groups enhancing the water solubility of very hydrophobic BODIPY dyes. Illumination of such compounds with suitable light (>640nm) allowed for high phototoxicity against HeLa (αvβ3 integrin and biotin receptor positive) and A549 (biotin receptor positive) cells compared to healthy MRC-5 (biotin negative) cells. Moreover, no dark toxicity was observed on selected cell lines (>10 μM) providing promising photosensitizers for tumour-targeted photodynamic therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.