Abstract

We perform a theoretical investigation on the near-infrared longitudinal plasmon polariton gaps in a one-dimensional semiconductor metamaterial photonic crystal. The considered structure is (AB)N where N is the number of periods, layer A is a dielectric, and layer B is a semiconductor metamaterial composed of Al-doped ZnO (AZO) and ZnO. For oblique incidence under transverse magnetic mode, it is found that, due to the anisotropic permittivity of semiconductor metamaterial, there exist multiple longitudinal plasmon polariton gaps which are ascribed to the coupling between photon mode and metamaterial bulk electric plasmon. The photonic band and gap structures are investigated as functions of incident angle, filling factor of semiconductor metamaterial, thicknesses of constituent layers, and number of periods as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.