Abstract

The treatment of massive bone defects is still a significant challenge for orthopedists. Here we have engineered synthetic porous AuPd alloy nanoparticles (pAuPds) as a hyperthermia agent for in situ bone regeneration through photothermal therapy (PTT). After being swallowed by cells, pAuPds produced a mild localized heat (MLH) (40-43 °C) under the irradiation of a near-infrared laser, which can greatly accelerate cell proliferation and bone regeneration. Almost 97% of the cranial defect area (8 mm in diameter) was covered by the newly formed bone after 6 weeks of PTT. RNA sequencing analysis was used to obtain insight into the molecular mechanism of the MLH on cell proliferation and bone formation. These results demonstrated that the Wnt signaling pathway was involved in the MLH. This Letter provides a unique strategy with mild heat stimulation and high efficiency for in situ bone regeneration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.