Abstract

BackgroundRecently, combined photodynamic therapy (PDT) and photothermal therapy (PTT) has become a desired treatment for cancer. However, the development of economic, high-efficiency, and safe photosensitizers/photothermal agents remains a significant challenge.MethodsA novel nanocomposite has been developed via the assembly of iron oxide carbon dot (Fe3O4-CDs) nanoparticles and black phosphorus quantum dots (genipin [GP]-polyglutamic acid [PGA]-Fe3O4-CDs@BPQDs), and this nanocomposite shows a broad light-absorption band and a photodegradable character.ResultsIn vitro and in vivo assays indicated that GP-PGA-Fe3O4-CDs@BPQDs were highly biocompatible and exhibited excellent tumor-inhibition efficacy, due to the synergistic PTT and PDT via a near-infrared laser. Importantly, in vivo tumor magnetic resonance imaging (MRI) results illustrated that GP-PGA-Fe3O4-CDs@BPQDs can be specifically applied for enhanced T2 MRI of tumors. This work presents the first combined application of a PDT and PTT effect deriving from BPQDs and MRI from Fe3O4-CDs, which may promote utilization of black BPQDs in biomedicine.ConclusionAs expected, GP-PGA-Fe3O4-CDs@BPQDs displayed a dramatically enhanced ability to destroy tumor cells, due to the synergistic combination of PTT and PDT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call