Abstract

Nanophototherapy has emerged as a novel and promising therapeutic strategy for cancer treatment; however, its efficacy in dermatological tumors and precancerous lesions remains severely limited. This study aimed to use the gas-liquid injection technique to fully utilize the synergistic photodynamic therapy (PDT)/photothermal therapy (PTT) of nanomaterials to enhance the antitumor effect. A novel oxygen-generating nanocomposite (TSL-IR820-CAT) was synthesized by encapsulating the photosensitizer IR820 and catalase (CAT) using a matrix encapsulation method based on thermosensitive liposomes (TSL).-The liquid injection technology enhances the treatment of cutaneous squamous cell carcinoma (cSCC). The combined PDT/PTT therapeutic effect of TSL-IR820-CAT on cSCC was investigated using in vivo and in vitro experiments. TSL-IR820-CAT, with good stability, efficient drug release, and photothermal conversion ability, was successfully developed. Nanoparticles injected through a needle-free syringe efficiently accumulate in the tumor tissue. As TSL-IR820-CAT was consumed by A431 cells, some of it localized to the mitochondria and produced oxygen to relieve hypoxia, thereby enhancing the efficacy of PDT. PDT/PTT combination therapy resulted in irreversible apoptosis and inhibited cSCC growth. TSL-IR820-CAT coupled with gas-liquid injection was free from apparent systemic side effects. This article discusses new strategies and ideas for treating skin tumors and has significant application value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.