Abstract

The ultraluminous infrared Seyfert 1 galaxy Mrk 231 has been spectrally imaged in the K band with the new three-dimensional MPE integral field spectrometer. The combined images of the H2 emission lines show, for the first time in an ultraluminous infrared galaxy, the presence of an extended circumnuclear structure of hot molecular gas. The H2 emitting region has a size of ~2.4 kpc and a hot molecular gas mass M ~2 × 104 M☉. The H2 emission-line ratios indicate that the gas is most likely thermally excited. If as in NGC 7469 star formation is associated with the H2 emission, the starburst would have a far-IR luminosity LFIR ~ 1 × 1012 L☉. This value represents an upper limit, since a fraction of the hot molecular gas may be excited by the radiation field emerging from the nucleus. The K-band three-dimensional data cube also shows for the first time the presence of extended narrow Paα emission blueshifted by ~1400 km s-1 with respect to the systemic velocity, and located ~0.6 kpc northwest of the nucleus. The detection of CO absorption bands with a spatial distribution peaking on the K-band continuum provides evidence for a central stellar concentration. The low CO spectroscopic index indicates, however, dilution by hot dust emission or by a nonthermal active galactic nucleus. The Paα/Hα ratio confirms previous extinction measurements based on Balmer line ratios, i.e., visual extinction of AV ~ 2.0-6.6 mag. The quasar-type nucleus of Mrk 231 should then be transparent at 2 μm and also in hard X-rays. A weak nuclear He I λ2.058 μm (He I/Paα = 0.032) is detected, and no detection of [Si VI] λ1.962 μm is made, placing an upper limit of 4 × 10-18 Wm-2 for the coronal gas emission. The ionizing source could either be a far-UV and X-ray quiet quasar or else a nuclear starburst with an upper mass limit ≥60 M☉.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call