Abstract

We report optical gating at the pentacene/lead sulfide (PbS) functional interface through which mobile carriers are confined in the pentacene layer close to the PbS colloidal quantum dot (CQD) layer. Using a bottom-contact pentacene/PbS field effect transistor (FET) structure, hole doping in a pentacene layer is demonstrated and the mechanism by which mobile carriers are created is elucidated by probing threshold voltage shift in the FET and the pentacene/PbS interfacial trap density. A large threshold voltage shift under selective illumination (780 nm) of the PbS CQD layer is interpreted as signature of hole transfer from the PbS to the pentacene. Electron trapping at the pentacene/PbS interface is suggested to be involved in the optical gating process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.