Abstract
To engineer optimized near-infrared (NIR) active thermosensitive liposomes to potentially achieve image-guided delivery of chemotherapeutic agents. Thermosensitive liposomes were surface-coated with either polyethylene glycol or dextran. Differential scanning calorimetry and calcein release studies were conducted to optimize liposomal release, and flow cytometry was employed to determine the in vitro macrophage uptake of liposomes. Indocyanine green (ICG) was encapsulated as the NIR dye to evaluate the in vivo biodistribution in tumor-bearing mice. The optimized thermosensitive liposome formulation consists of DPPC, SoyPC, and cholesterol in the 100:50:30 molar ratio. Liposomes with dextran and polyethylene glycol demonstrated similar thermal release properties; however in vitro macrophage uptake was greater with dextran. Non-invasive in vivo NIR imaging showed tumor accumulation of liposomes with both coatings, and ex vivo NIR imaging correlated well with actual ICG concentrations in various organs of healthy mice. The optimized thermosensitive liposome formulation demonstrated stability at 37°C and efficient burst release at 40 and 42°C. Dextran exhibited potential for application as a surface coating in thermosensitive liposome formulations. In vivo studies suggest that liposomal encapsulation of ICG permits reliable, real-time monitoring of liposome biodistribution through non-invasive NIR imaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.