Abstract

Bimetallic nanozymes exhibited multi-enzyme activities, but glutathione (GSH) overexpression and weak catalytic capability restricted their catalytic therapeutic performance. Thus, this study developed a smart nanozyme (AuPt@MnO2) with a core–shell structure by coating manganese dioxide (MnO2) on the gold-platinum (AuPt) nanozyme (AuPt@MnO2) surface to enhance catalytic therapy. In this nanozyme, AuPt possessed triple-enzyme activities, i.e., catalase, peroxidase, and glucose oxidase, which greatly improved oxygen, hydroxyl radicals (·OH), and hydrogen peroxide generation, due to cyclic reactions. Moreover, GSH consumption degraded the MnO2 shell, which then enhanced ·OH generation of Mn2+. More importantly, the near-infrared-II (NIR-II) photothermal performance of AuPt@MnO2 with a high conversion efficiency of 38.7 % further promoted multi-enzyme activities and enhanced catalytic therapy. Moreover, combining NIR-II photothermal therapy and enhancing catalytic therapy decreased the cell viability to 10.8 %, and thereby, the tumors were cleared. Thus, the AuPt@MnO2 smart nanoplatform developed in this study exhibited NIR-II photothermal-promoted multi-enzyme activities and excellent antitumor efficacy, which will be promising for enhancing catalytic therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.