Abstract

To ensure maximum therapeutic safety and efficacy of stem cell transplantation, it is essential to observe the kinetics of behavior, accumulation, and engraftment of transplanted stem cells in vivo. However, it is difficult to detect transplanted stem cells with high sensitivity by conventional in vivo imaging technologies. To diagnose the kinetics of transplanted stem cells, we prepared multifunctional nanoparticles, Gd2O3 co-doped with Er3+ and Yb3+ (Gd2O3: Er, Yb-NPs), and developed an in vivo double modal imaging technique with near-infrared-II (NIR-II) fluorescence imaging and magnetic resonance imaging (MRI) of stem cells using Gd2O3: Er, Yb-NPs. Gd2O3: Er, Yb-NPs were transduced into adipose tissue-derived stem cells (ASCs) through a simple incubation process without cytotoxicity under certain concentrations of Gd2O3: Er, Yb-NPs and were found not to affect the morphology of ASCs. ASCs labeled with Gd2O3: Er, Yb-NPs were transplanted subcutaneously onto the backs of mice, and successfully imaged with good contrast using an in vivo NIR-II fluorescence imaging and MRI system. These data suggest that Gd2O3: Er, Yb-NPs may be useful for in vivo double modal imaging with NIR-II fluorescence imaging and MRI of transplanted stem cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.