Abstract

Cycloparaphenylenes (CPPs) are hoop-shaped conjugated hydrocarbons corresponding to partial structures of fullerenes or armchair carbon nanotubes. Here, we examined the fluorescence properties of a series of [ n]cycloparaphenylene dications ([ n]CPP2+, n = 5-9), which have unique in-plane aromaticity. The fluorescence peak positions of the [ n]CPP2+s shifted to the longer-wavelength region with increasing ring size, reaching the near-infrared region for those with n > 5. The fluorescence quantum yield of [6]CPP2+ was the highest among the [ n]CPP2+s examined in this study, and the value was on the same order as that of carbon nanotubes. The Stokes shifts of [ n]CPP2+s were smaller than those of neutral [ n]CPPs, which do not have in-plane aromaticity. Theoretical calculations indicate that [ n]CPP2+s undergo smaller structural changes upon S0-S1 transition than [ n]CPPs do, and this is responsible for the difference of the Stokes shift. Furthermore, molecular orbital analysis reveals that the S0-S1 transition of smaller [ n]CPP2+s has an electric-dipole-forbidden character due to HOMO → LUMO/HOMO → LUMO+1 mixing. The relatively high fluorescence quantum yield of [6]CPP2+ is considered to arise from the balance between relatively allowed character and the dominant effect of energy gap.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.