Abstract

The effective treatment for periodontitis is to completely and sustainedly eradicate the bacterial pathogens from the complex periodontal pockets. Local sustained-release antibiotics as a complementary treatment after scaling and root planning can sustainedly combat bacterial pathogens in the periodontal pockets to help treat the disease, but the increasing concern of bacterial resistance limits its future use. Here, we reported a local antibacterial system based on microsized multifunctional Ag-TiO2-x encapsulated in alginate (ATA) microspheres. We confirmed that ATA displayed strong photothermally enhanced dual enzyme-mimicking (peroxidase-like and catalase-like) activities and weak photocatalytic activity under 808 nm near-infrared (NIR) irradiation, which could boost the generation of reactive oxygen species (ROS) and O2 in the presence of low-level H2O2. As a result, the ATA/H2O2/NIR system exhibited efficient antibacterial activity against Porphyromonas gingivalis and Streptococcus gordonii in both planktonic and biofilm forms. With the help of ROS, ATA could release Ag+ in concentrations sufficient to inhibit periodontal pathogens as well. Moreover, the in situ-generated oxygen was supposed to alleviate the local hypoxic environment and would help downregulate the lipopolysaccharide-mediated inflammatory response of periodontal stem cells. The in vivo rat periodontitis treatment results demonstrated that the ATA/H2O2/NIR system reduced the bacterial load, relieved inflammation, and improved tissue healing. Our work developed a new local prolonged bactericidal and oxygenation system for enhanced periodontitis. Avoiding the usage of antibiotics and nanomaterials, this strategy showed great promise in adjunctive periodontitis treatment and also in other biomedical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.