Abstract

Phosphorescence lifetime imaging microscopy (PLIM) using a phosphorescent oxygen probe is an innovative technique for elucidating the behavior of oxygen in living tissues. In this study, we designed and synthesized an Ir(III) complex, PPYDM-BBMD, that exhibits long-lived phosphorescence in the near-infrared region and enables in vivo oxygen imaging in deeper tissues. PPYDM-BBMD has a π-extended ligand based on a meso-mesityl dipyrromethene structure and phenylpyridine ligands with cationic dimethylamino groups to promote intracellular uptake. This complex gave a phosphorescence spectrum with a maximum at 773 nm in the wavelength range of the so-called biological window and exhibited an exceptionally long lifetime (18.5 μs in degassed acetonitrile), allowing for excellent oxygen sensitivity even in the near-infrared window. PPYDM-BBMD showed a high intracellular uptake in cultured cells and mainly accumulated in the endoplasmic reticulum. We evaluated the oxygen sensitivity of PPYDM-BBMD phosphorescence in alpha mouse liver 12 (AML12) cells based on the Stern-Volmer analysis, which gave an O2-induced quenching rate constant of 1.42 × 103 mmHg-1 s-1. PPYDM-BBMD was administered in the tail veins of anesthetized mice, and confocal one-photon PLIM images of hepatic tissues were measured at different depths from the liver surfaces. The PLIM images visualized the oxygen gradients in hepatic lobules up to a depth of about 100 μm from the liver surfaces with a cellular-level resolution, allowing for the quantification of oxygen partial pressure based on calibration results using AML12 cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.