Abstract

Fumonisin B1 (FB1), the most prevalent and highly toxic mycotoxin within the fumonisins family, poses threats to humans, especially in children and infants, even at trace levels. Therefore, it is essential to design an easy and sensitive detection strategy. Herein, a brand-new dual-photoelectrode photoelectrochemical (PEC) sensing platform for FB1 detection under near-infrared irradiation was unveiled. This platform integrated a photon up-conversion bio-photocathode substrate (UCNPs/Au/CuInS2, UCNPs: NaYF4: Yb3+, Er3+, Nd3+) and used a SnO2/SnS2@Bi/Bi2S3 heterojunction photoanode to greatly enhance light capture. Additionally, ZnO coated with polydopamine (ZnO@PDA) was utilized as a signal inhibitor. The restoration of photocurrent occurred due to the strong binding affinity between FB1 and its aptamer (FB1-Apt), facilitating the dissociation of FB1-Apt/ZnO@PDA from the photoelectrode. The PEC sensing performance and the electron transfer process were thoroughly examined. The developed “signal-restoration” PEC aptasensor exhibited a wider dynamic linear range from 1.0 × 10−3 to 1.0 × 102 ng/mL, with a lower limit of detection (0.13 pg/mL). It has demonstrated excellent practical detection performance in unspiked real samples, such as corn paste, with the FB1 enzyme-linked immunosorbent assay (ELISA) Kit serving as a reference, indicating its potential for routine analysis of other mycotoxins. Thus, this research establishes a feasible dual-photoelectrode PEC framework for the effective detection of mycotoxins and other hazardous substances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.