Abstract

We present ground-based near-infrared (H-band) imaging of the circumstellar disk around the nearby classical T Tauri star TW Hydrae. The scattered-light image shows a face-on disk with a radius of 4'' (corresponding to 225 AU) and a morphology that agrees with recent images from the Hubble Space Telescope and the Very Large Array. The best-fit power-law for the disk's radial surface brightness profile obeys the law r-3.3±0.3. We use our image and published continuum flux densities to derive properties of the disk with a simple model of emission from a flat disk. The best-fit values for disk mass and inner radius are 0.03 M☉ and 0.3 AU, respectively; the best-fit values for the temperature, density, and grain opacity power-law exponents (q, p, and β) are 0.7, 1.3, and 0.9, respectively. These properties are similar to those of disks around classical T Tauri stars located in more distant molecular clouds. Because of TW Hydrae's nearby location and pole-on orientation, it is a uniquely favorable object for future studies of radial disk structure at the classical T Tauri stage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.