Abstract
Conventional squaraine dyes exhibit an intense absorption band in the red region of the solar spectrum and with appropriate design can also have high energy absorption as well, making them interesting building blocks toward achieving panchromatic dyes for dye sensitized solar cell (DSSC) applications. In this report, eight squaraine dyes with thiophene, 4-hexyl-4H-dithieno[3,2-b:2′,3′-d]pyrrole, dithieno[3,2-b:2′,3′-d]thiophene, and 4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene (DTS) π-bridges with cyanoacetic acid (CA) and cyanophosphonic acid (PA) acceptor/anchoring groups are synthesized to extend the squaraine absorption into the 450–550 nm region and to provide different spatial arrangements of solubilizing groups. Squaraines with CA anchoring groups have higher power conversion efficiencies compared to their PA analogs, with the highest being 8.9% for the DTS-based dye, which is among the highest reported in the literature for squaraine dyes. This is due to high short circuit currents (JSC) and increased open circuit voltages (VOC). Dyes with PA anchoring groups exhibited lower JSC resulting from decreased charge injection efficiency, as determined by femtosecond transient absorption spectroscopy. This study suggests that out-of-plane bulky substituents may increase DSSC performance not only by increasing JSC through decreased aggregation but also by increasing VOC through decreased TiO2/electrolyte recombination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.