Abstract

Optical management and design is one of the most effective methods to unlock the full potential of photocurrent density and power conversion efficiency for perovskite solar cells (PSCs). However, the common-used optical designs are still limited by the near-infrared response. Here, we proposed an effective optical structure in PSCs by texturing the rear-side perovskite layer with a rectangular grating to promote the optical response in the near-infrared region. Through the comprehensive numerical simulations, the new design under the optimized structural configuration shows an improved photocurrent density, i.e., from 22.75 (flat structure) to 23.72 mA/cm2. We confirm that the optical absorption enhancement occurs at the near-infrared region by the wavelength-dependent absorption and reflection spectra. Besides, the light-trapping mechanism was clarified by the comprehensive analysis of the electric field distributions. Moreover, PSCs having the rear-grating design demonstrate the superior optical performance compared to that of flat design in the varied incident angles. Our simulation results displayed in this study provide an easy scheme to promote the optical absorption in near-infrared region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.