Abstract
We report photocurrent-voltage data for improved n-Si/metal devices using CH3-terminated n-Si(111) and Au nanoparticles (NPs). CH3-terminated Si(111) surfaces maintain good electronic properties throughout device assembly, while the use of Au NPs as precursors to metal films circumvents the standard issues associated with interfacial reactivity of metals in Schottky barrier formation. Such devices demonstrate excellent photovoltaic properties, with photovoltages that approach the maximum values predicted for photodiodes that are limited by Si bulk diffusion/recombination processes rather than interfacial processes. These devices are compared to standard n-Si/Au devices made via thermally evaporated Au films which are well-known to be limited by junction-based recombination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.