Abstract
Wireless communication and radars will play a crucial role for autonomous vehicles in the nearest future. However, the blockage caused by surrounding cars can degrade communication performance, while automotive radars are never aimed to operate in such conditions. Therefore, in this paper, the authors propose the concept of near-ground propagation, reducing the blockage effect in the road traffic conditions. Specifically, the radio waves may freely propagate under the blocking car's bottom if the antennas are placed as low as possible to the road. Based on the measured and modelled results presented in the paper, it may be claimed that near-ground communication and radar sensing are feasible and may combat even heavily obstructed cases. Nevertheless, some challenges associated with antenna locations were encountered. For example, it was discovered that antenna height at 0.5 m acts less effectively against blockage than at 0.3 m. Next, the 27 dB excess loss at the 0.5 m antenna height in the radar deployment is larger than 17 dB at 0.3 m. In its turn, the higher ground clearance of the blocking vehicle positively affects the near-ground performance. Additionally, the signal propagation at the grazing angle crucially reduces the relevant losses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.