Abstract

AbstractA part of near-inertial wind energies dissipates locally below the surface mixed layer. Here, their role in the climate system is studied by adopting near-inertial near-field wind-mixing parameterization to a coarse-forward ocean general circulation model. After confirming a problem of the parameterization in the equatorial region, we investigate effects of near-field wind mixing due to storm track activities in the North Pacific. We found that, in the center of the Pacific Decadal Oscillation (PDO) around 170°W in the mid latitude, near-field wind mixing transfers the PDO signal into deeper layers. Since the results suggest that near-field wind mixing is important in the climate system, we also compared the parameterization with velocity observations by a float in the North Pacific. The float observed abrupt and local propagation of near-inertial internal waves and shear instabilities in the main thermocline along the Kuroshio Extension for 460 km. Vertical diffusivities inferred from the parameterization do not reproduce the enhanced diffusivities in the deeper layer inferred from the float. Wave-ray tracing indicates that wave trapping near the Kuroshio front is responsible for the elevated diffusivities. Therefore, enhanced mixing due to trapping should be included in the parameterization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call