Abstract

Near-field thermophotovoltaic (TPV) power generation has been attracting increasing attention as a promising approach for efficient conversion of heat into electricity with high output power density. Here, we numerically investigate near-field TPV devices with surrounding reflectors for efficient recycling of low-energy photons, which do not contribute to the power generation. We reveal that the conversion efficiency of a near-field TPV system can be drastically increased by introducing a pair of reflectors above and below the system, especially when the two mirrors are not in contact with the emitter and absorber. In addition, we investigate the influence of non-perfect photon recycling on the TPV efficiency and reveal that near-field TPV systems are more robust against the decrease of the reflectivity of the reflectors than the far-field TPV systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call