Abstract

This work reports experimental studies on radiative heat flux between two parallel glass surfaces. Small polystyrene particles are used as spacers to maintain a micron-sized gap between two optical flats. By carefully choosing the number of particles and performing the measurement in a high-vacuum environment, the experiment is designed to ensure that the radiative heat flux is the dominant mode of heat transfer. The experimental results clearly demonstrate that the radiative heat flux across micron-sized gaps can exceed the far-field upper limit given by Planck’s law of blackbody radiation. The measured radiative heat flux shows reasonable agreement with theoretical predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.