Abstract

The acoustic wave around a sound source in the near-field area presents unconventional properties in the temporal, spectral, and spatial domains due to the propagation mechanism. This paper investigates a near-field sound localizer in a small profile structure with a single microphone. The asymmetric structure around the microphone provides a distinctive spectral variation that can be recognized by the dedicated algorithm for directional localization. The physical structure consists of ten pipes of different lengths in a vertical fashion and rectangular wings positioned between the pipes in radial directions. The sound from an individual direction travels through the nearest open pipe, which generates the particular fundamental frequency according to the acoustic resonance. The Cepstral parameter is modified to evaluate the fundamental frequency. Once the system estimates the fundamental frequency of the received signal, the length of arrival and angle of arrival (AoA) are derived by the designed model. From an azimuthal distance of 3–15 cm from the outer body of the pipes, the extensive acoustic experiments with a 3D-printed structure show that the direct and side directions deliver average hit rates of 89% and 73%, respectively. The closer positions to the system demonstrate higher accuracy, and the overall hit rate performance is 78% up to 15 cm away from the structure body.

Highlights

  • Conventional sound localization systems are focused on far-field source discrimination with multiple receivers

  • The signal that properly propagates a certain pipe generates the unique fundamental frequency that is estimated by the dedicated algorithm in the Near-field monaural localization (NFML) system

  • This paper presents a novel method of localizing the arrival direction of a near-field sound source with a single microphone

Read more

Summary

Introduction

Conventional sound localization systems are focused on far-field source discrimination with multiple receivers. Plane wave radiation in the far-field area provides linear direction-wise information on the time and phase of signal propagations. Distributed receivers collect the given cues for deterministic and/or stochastic processes in order to estimate the source direction. Numerous approaches have been addressed and realized in various domains over the far-field zone. The well-defined propagation models have devised high-performance localization systems in various mediums, such as sonar systems. A higher number of receivers and further exploration of signals lead to improved estimation and detection results in localization

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call