Abstract
Broadband seismic recordings in the near-field of Strombolian explosions, at 500 m distance, show pronounced effects of tilt. The tilt signal is predominant in the horizontal components beyond about 50 s period while it is negligible in the vertical component. The waveform of the tilt signal at the seismometer output is a double time integral of the waveform due to ground displacement. Since the waveform of the displacement is known from the vertical component, the waveform of the tilt signal in the horizontal seismogram can be reconstructed and both contributions can be separated from each other with a linear regression. We have analyzed data recorded in the summit region of Stromboli in 1995 and 1996. The regional tilt can be determined from the differential vertical displacement between instruments a few tens of meters apart. Local tilts determined with individual instruments scatter around the regional value, most probably due to local strain-tilt-coupling. Mogi's (1958) formulae for a pressure source in a homogeneous halfspace are used to interpret the results. The source displaces a volume of several tens of cubic meters of the surrounding rock before the explosive discharge; typical volumes were 25 m3 in July 1995 and 60 m3 in September 1996.
Highlights
Summary
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.