Abstract
For high-density optical memory system, near-field recording on a medium with phase-change nanoparticles and dual metal layers was proposed. A finite difference time domain (FDTD) analysis demonstrated that a combination of a nanoantenna with such a medium so as to enhance plasmonic resonance would enable effective recording with larger (~10 times) working distance (WD) than for a conventional medium. A reproduction method of detecting the intensity of the reflected wave from the nanoantenna was also proposed in the same setup as the recording. We found that plasmonic resonance induced in the nanoantenna was enhanced and the intensity of reflected light was also increased when the phase state of nanoparticle was crystalline. Since the sub-diffraction limited size of nanoantenna is larger than a nanoparticle, the detected signal intensity can be greatly improved. Calculated results showed that our proposed system and methods for recording and reproduction would have a potential to become effective solutions for terabyte-class optical memory system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.