Abstract

The convolutional perfectly-matched-layer (CPML) absorbing boundary condition is fully capable of handling near-field wave absorption that usually combines near-grazing wave incidence with wave evanescence. The appropriate choice of the various CPML parameters to realize this potential for any given simulation problem is a challenging task that is typically achieved through exhaustive and time-consuming searches that involve large numbers of full-scale simulations. The presented work here uses a previously developed predictive system of equations that accurately determines numerical reflections off the PML interface and embeds it into a global optimization routine that reliably computes the required optimum CPML parameters. This predictive system of equations has also been extended and validated for the M24 and FV24 integral-based high-order FDTD algorithms. With this approach, the task of selecting optimum CPML parameters that would usually take several days of intense computations can now be accomplished within a few minutes on an average personal computer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.