Abstract

In this work, the unified methodology based on the newly designed electrically small planar resonant microwave sensor to detect the subsurface defect in wood products is presented. The proposed planar sensor involves loading of the specially designed coupled microstrip line with a novel small resonating element at its end. The novel design topology of the proposed near field sensor substantially increases the overall resolution and sensitivity of the microwave scanning system due to the strong localization of the electric field in the electrically small sensing region. A detailed electromagnetic and quasi static analysis of the near field scanning mechanism is also described in this work, which helps to understand the physics involved in the proposed scanning mechanism. The prototype of the designed sensor is fabricated on a 0.8 mm Roger 5880 substrate, and accordingly, the scattering parameters of the sensor under both loaded and unloaded conditions are measured. The measured and simulated scattering parameters under the unloaded condition are compared to validate the fabricated sensor, and a closed match between the simulated and measured resonance frequencies is observed. The fabricated sensor is used here for two potential applications, viz., the dielectric sensing of various low permittivity contrast dielectric materials and subsurface imaging of wood products to trace concealed defects and moisture content under the thin paint layer. The proposed resonant sensor can potentially be used to develop the low profile, low cost, non-destructive, and non-invasive quality monitoring system for inspecting various types of wood products without peeling off the upper paint coating.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.