Abstract

The Pascal triangle is a geometric representation of binomial coefficients in triangular form. We utilize this formalism to deterministically arrange silver nanocylinders of different sizes (30, 60, and 90 nm) on a triangle and numerically study their near-field optical properties. We show that near-field intensities at specific points on this triangle depend on the wavelength and angle of incidence. From the wavelength-dependent studies at various junctions of nanocylinders, we obtain maximum near-field intensity at 350 and 380 nm. By varying the angle of incidence of the TM-polarized plane wave, we find systematic variation in the near-field intensity at different junctions of the geometry. Our study will lead to insights in designing controllable electromagnetic hot spots for chip-based plasmonic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.